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SUMMARY 
lkrodimmsional finite element analyses of two types of m i )  a conduit gate with pressure flow upstream of 
the gate and free surface flow downstream of the gate and (ii) a sluice gate with free surfacm both upstream and 
downstream of the gak-arc done using ideal h i d  theory. The conduit gate problem is solved using both + and 
$-formulations. Various methods of satisfjmg the boundary conditions were tested for both formulations. The 9- 
formulation developed in the pnscnt study is found to converge faster for flows with Froude numbers less than 4, 
which are common in sluice gates. The results obtained from the present study are compared with results from 
aualyticd and experimntal techniques available in the literaturr. The $-fornulation developed m the pnsmt 
study is then used to solve the spillway gate problem, for which no analytical solution is available. 
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1. INTRODUCTION 

Conduit gates, sluice gates and spillway gates a~ used to regulate 00ws in hydraulic structures. 
Conduit gates are usually provided at the outlet works to regulate the flow of water. The location of a 
conduit gate at the downstream end of a hydraulic structure causes p v i t y  flow downstream of the 
gate, while a pmssum flow exists upstrcam, thus causing a transition from conduit to fke surface. The 
sluice gate problem differs h m  the conduit gate problem in two ways. First, in the sluice gate problem 
the free surface 00w exists upstream also; secondly, the discharge is not known a priori. The boundary 
condition at the lip of the gate provides a mechanism for updating the trial discharge. Spillways are 
usually designed for ungated flow. Spillways with tainter gates are useful in controlling the discharge 
for a given design head. The hydraulic design of gated spillways is usually based on the United States 
Anny Corps of Engineers' design only. The spillway gate has four degrets of freedom, namely the 
position of the gate trunnion, the gate radius, the gate opening and the position of the gate seat, which 
makes it difficult to obtain an analytical solution. The computational difficulties encountered in the 
discharge calculation and the satisfsction of boundary conditions in the case of a spillway gate are also 
discussed in this study. The three problems discussed in the present study, namely the conduit gate, the 
sluice gate and the spillway gate, belong to the class of problems called free boundary problems. 
Crank2 gives 1u1 excellent review of free boundary problems available in the literature. In frte boundary 
problems one of the boundaries is not known apriori. The two boundary conditions that the pressure is 
constant and that there can be no flow across the boundary have to be satisfied on the unknown free 
surface. Since the h e  surfitcc is not physically constmined, the solution region is deformable and the 
shape and size of this region have to be determined as part of the solution. 
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The flow under the gates is a highly converging one in which the inertia and gravity forces 
predominate over the viscous forces and the flowing fluid is assumed to be incompressible, 
homogeneous and non-viscous; hence the flow is htational. Thus the problem can be solved within 
the fiamework of potential flow theory. The flow is therefore governed by the Laplace equation with 
appropriate boundary conditions. 

2. REVIEW OF LITERATURE 

Rouve and Abdul Khade? solved the problem of the two-dimensional transition from conduit to free 
surface using complex variable theory and the conformal mapping technique. Laboratory experiments 
were! also conducted by them to compare the results from the analytical solution. Fangmeier and 
Slrelkod solved the sluice gate problem by taking into account the effects of the upstream frce surface 
and gravity exactly. However, their solution is restricted to sluice gates with reCtilinear boundaries only. 
Larocks developed a theory for planar sluice gates of arbitrary inclination. The effect of the upstream 
free surface was neglected by assuming a horizontal fixed boundary and the effect of gravity was not 
properly accounted for. Larock6 extended his work on planar sluice gates to radial gates and gives what 
is perhaps the only analytical solution available for radial gates. Southwell and Vaisey7 solved the 
sluice gate problem using finite differences. Masliyah et al. * used a boundary-fitted coordinate system 
to fit the shape of the Free surface with one of the co-ordinate lines. Finite element solutions of the 
sluice gate problem began with McCorquodale and Li? The method is similar to the one used by 
Southwell and Vaisey7 but uses finite elements. However, the large number of trials required in 
determining the free surface is one of the disadvantages of this approach. The papers by Chan and 
Larock" and Chan er al. are considered to be an important contribution to the finite element solution 
of potential flows with a free surface. Chan and h o c k "  extended the work of Chan er al." to solve 
axisymmetric problems such as orifices and valves. Isaacs'' solved the sluice gate problem by the $- 
formulation using curved cubic triangular elements, taking into account the effect of the upstream fiee 
surface. Diersch et ~ 1 . ' ~  extended the work of Chan et al." to solve the sluice gate and spillway 
problems by the &formulation using quadratic triangular elements. The effect of the upstream free 
surface is not taken into account and hence the method is valid only for a limited range of gate 
opening/total head ratios. Heng er ~ 1 . ' ~  solved the sluice gate and radial gate problems using the $- 
formulation with quadratic triangular elements. Suresh Rao and Sankaranarayanan,'' closely following 
the Chan el al." formulation, solved the flow through a conduit gate first using eight-nod4 
quadrilateral elements composed of four triangular elements and then using an equal number of eight- 
noded isoparametric elements and concluded that the former predict velocities and pressures more 
accurately. A second set of inve~tigators'"'~ used a novel variable domain functional in combination 
with finite elements and solved either a crump weir or a spillway problem using the streamfunction 
formulation. Larock" analysed the flow over gated spillway gates, for a known discharge, by using two 
different methods, namely complex function theory and the finite element method. Finnie and 
Jeppson" used a commercial finite element computer code to solve the sluice gate problem by using 
turbulent flow theory and compared the velocities and pressures obtained with the measured values 
obtained by them h m  a model sluice gate. Cheng et ~ 1 . ~ ~  solved the sluice gate problem using the 
boundary integral equation method (BIEM). 

3. MATHEMATICAL FORMULATIONS FOR CONDUIT GATE PROBLEM 

Figure l(a) shows the definition sketch of a two-dimensional conduit gate with a top hood angle of 90". 
A uniform flow is assumed to approach fiom AB with a thickness a and converge towards the opening 
of depth b. From there onwards a free surface emerges and contmcts along DE to a final depth y, 
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Figure I@). Typical top triPngular element 

resulting in a coefficient of contraction C, = y / b .  The asymptotic free surface elevation is assumed to 
occur at a distance equal to three times the slot opening b. The conduit is assumed to be wide enough 
to approximate the flow as two-dimensional. The problem is formulated in terms of an unknown head 
for a given discharge and gate opening. 

3.1. Di#iervnces between 4- and $-formulations 

Table I gives the mathematical formulations of the problem using 4 and +. In the case of the 4- 
formulation the constant normal velocity equation (3) is imposed upstream, while a constant potential 
is applied along the upstream and downstream faces to satisfy the far-upstream and fardownstream 
uniform velocities. In the case of the +-formulation, equation (9) is imposed to satisfy the uniform 
velocities upstream and downstrtam. Hence the second term in equation (8) reduces to zero when the 
upstream and downstream uniform velocities are imposed in the $-formulation. The major difference 
between the 4- and +-formulations lies in the application of the constant pressure condition. Assuming 
a trial free surface, velocities are calculated along the l k e  surface using equation ( 5 )  and used to satisfy 
the constant pressure condition. The velocity potentials art! calculated along the free surface assuming 
a linear variation in 4 between two successive nodes starting from the node far downstream in the 4- 
formulation. In the case of the JI-formulation the velocities are directly implemented as a Neumann 
boundary condition. When solving the problem using eight-nod4 arbitrary quadrilateral elements, the 
quadratic distribution of velocities is incorporated as a Neumann boundary condition. This leads to 
faste!r convergence in the case of the $-formulation. As stated earlier, in free boundary problems the 
two boundary conditions that the pressure is constant and that there can be no flow across the boundary 
have to be specified. The application first of zero n o d  velocity, equation (6) of Table I, causes the 
second term in equation (2) of Table I to bumme zero, thus resulting in the satisfaction of only one 
boundary condition after each iteration. This sequence of satisfying the boundary conditions is not 
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Table 1. Mathematical mudelling of #- and $-formulations 

#-Formulation $-Formulation 

Governing equation 

- + - = o  $4 $4 s v  
Functional 

w) u = -  along- 
an 

(4) 
#=constant along EF 

p = constant along DE 

v: VE' 
- + + t = - + + g Y ,  2 2 

(6)  
a# 

- an 
V - - = O  along DE 

(7) 

(9)  
@ v = - = O  alongABandEF 
as 

w V, = - = 0 along DE 
a9 

$=0  alongAF 

$ = Q  alongBCDE 

Note: i is any node on the free surface and E is the node far downstream on the fra surface. 

successful in high-speed free surface flow problems owing to the instabilities caused by higher 
velocities. It was found to be more successful by Suresh Rao and Sankararayanan" in solving fiee 
boundary problems in porous media owing to the low velocities prevailing in seepage flow. In solving 
fiee surface problems in hydraulic structures, assuming a trial free surface, the constant pressure 
condition is satisfied first. Then the problem is solved for the resulting fixed domain. Next the 
condition of zero normal velocity is satisfied by fitting a series of cubic polynomials through each set 
of three successive nodal points as described by Chan et af." This process is repeated till the 
convergence criterion is satisfied. Owing to the high velocities prevailing in the case of free water 
surface problems, quadratic elements are used such that the field variable is approximated by a second- 
order polynomial, so that the approximations for the velocity compnents are linear within each 
triangular region. Chan et af." and Brebbia and Conno? give the element and load matrices for a 
quadratic triangular element. In the case of quadrilateral elements composed of four triangular 
elements, the coefficients corresponding to the four triangular elements are assembled. Then the matrix 
coefficients corresponding to the five interior nodes are eliminated using static condensation as 
described by Cook et al." 
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3.2. Method of satisfaction of constant pressure condition 

3.2.1. Method of satisfation of constant presmre condition in 4-formulation. The technique 
adopted here to solve the conduit gate problem is essentially the same as that given by Chan et al. ' I By 
applying the Bernoulli equation between any node i and the downstream reference point d (Figure 
l(a)), on the free surface 

where V is the velocity, p is the pressure, g is the acceleration due to gravity, y is the depth of water, p is 
the density of water. 

The value of 4 at any node i is" 

The values of 4 are calculated by assuming the value of 4 at the farthest node, +,, and then calculating 
the values of 4 up to the lip using equation (14). Thus the constant pressure condition is satisfied by 
specifylng the values of velocity potentials along the !ite surface. 

3.2.2. Method of satisfaction of constant pressure condition in $-formulation. A new method of 
satisfaction of the constant pressure condition in the $-formulation is used in the present study and 
found to possess better convergence properties. The velocities are calculated using equation (1 3) and 
directly imposed as a Neumann boundary condition. 

The second term in equation (8) of Table I is given by 

Knowing the tangential velocities (a$/an) and assuming a quadratic variation in velocities and 
streamfunction, the integral is derived for a typical case. 

A typical top triangular element of the eight-noded quadrilateral element is shown in Figure I@). 
Taking the shape functions of a six-noded triangle for $ and a one-dimensional quadratic distribution 
for velocities, equation (I  5 )  becomes 

The integral corresponding to node 2 is given by 

Integrals of the type given by equation (17) can be evaluated using the formula 
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The first integral in equation (17) is derived as 

)I23 v2 
2 x 3 !  2! 4 x 3 ! x 1 !  2 x 2 ! x 1 !  

JL:(zL, - 1x1 - 2 ~ 3 ) ~ ~  d~ = (- 4! - - 3! - 5!  + 4! 
4 

= - 1  V 
30 23 

(19) 

by applying the Gauss-Legendre relation (18). Thus the integral in equation (15) can be evaluated as 

Chan et al." used a constant upstream velocity as the only Neumann boundary condition when 
solving the orifice problem using the c#+formdation. However, in the present study the quadratic 
distribution of velocities is incorporated while satisfjmg the constant pressure condition in the case of 
the #-formulation. If a linear velocity distribution ( Vs = (V2 + V3)/2) is assumed on the sides, the 
integral equation (15) is evaluated as 

(R) = a[O '23 V, V3 0 2(V2 + V3) Of.  

For a constant velocity distribution (V3 = V2 = Vs = V) 

(R} = VIO 1 1 0 4 O]*. 
6 

Thus equation (22) can be used as the load vector for the ink@ corresponlng to constant velocities 
upstream in the #-formulation. 

3.3. Method of satisfbing zero normal velocity on f;ee d a c e  

Assuming a trial free surface, velocities are calculated and implemented as a Dirichlet boundary 
condition in the #-formulation and as a Neumann boundary condition in the #-formulation. The 
problem is solved for the resulting fixed domain. Then velocities are calculated from the #- or #- 
distribution as 

24 = * / a x ,  v = a+/@, u = aJ//b, v = -a#/&. (23) 
For satisfling zero normal velocity (v,, = O), 

usin e+vcos  e = o ,  
s = tan e = -v/u. 

Consider an element on the free surface defined by 

The free surface correction is" 
y =Rs + ~2 + CX+ D. 
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where S,= vi/ui for i =  1,2, 3. When the slope of the lip is nearly vertical, vI/uI becomes excessively 
large. Thus equation (26) has to be modified as 

(28) x =A? + BJ + CY+ D. 

Similarb, the equation for the iiee surface comction is" 

6Ax 
Ay = 

S1 +sS,+s,' 

where S1 = ul/v, = -tan a, S, = u3/v3 and 
and the y-axis. Thus the condition of zero normal velocity 

S2 = uZ/v2, a is the acute angle between the gate 
is satisfied by fitting a set of cubic 

polyno&als through each set of three successive nodal pin&. 

along a vertical are corrected by a value 
The net correction Ay is distributed along each vertical, i.e. the coordinates of the corner nodes 

where CN is the number of comer nodes along a vertical. The above method of correcting the free 
surface" is used in the present study to avoid coarsening or overlapping of the h e  surface nodes. 

3.4. Convergence criteria 

can be specified: 
When solving the transition problem through the +formulation, either of two convergence criteria 

(i) the difference in contraction coefficient between successive iterations, i.e. IC! - C;-~I < c, 

(ii) the difference in ordinates of the fiee surface nodes between successive iterations for all free 
-d-l I 5 L for i = 1, . . ., NSN, whered is they-co-ordinate of node i at 

When solving the problem through the $-formulation, in addition to the above two boundary 
conditions, the difference between the $-values and the discharge for all the free surface nodes can also 
be specified as a convergence criterion, i.e. - Ql 5 c, where J1: is the $-value of node i at iteration 
k, Q is the discharge and c is the error tolerance. 

where Ct is the contraction coefficient at itemtion k and 6 is the error tolerance 

surface nodes, i.e. 
iteration k, NSN is the number of free surface nodes and c is the error tolerance. 

4. NUMERICAL SIMULATION FOR CONDUIT GATE PROBLEM 

Figure 2(a) shows the discretization for a typical two-dimensional 45" transition fiom conduit to free 
surface. Eight-node arbitrary quadrilateral elements (Figure 2@)) composed of four quadratic 
triangular elements are used. The discretization is made finer in the vicinity of the gate to take care of 
the higher velocity gradients that prevail in this region. The discretization is also made finer near the 
fiee surface for better approximation of velocities. The domain marked ABCDE in Figurc 2(a) is fixed 
and the matrix corresponding to the elements in this domain is calculated only once. However, the flow 
region marked DEFG is a variable domain and the stifiess matrix corresponding to the elements in 
this domain is calculated every time an adjustment of the free surface is made. Theoretically, for an 
ideal fluid the asymptotic free surface is assumed to occur at infinity. In the present study also the 
asymptotic free surface is assumed to occur at a distance equal to three times the slot opening fiom the 
slot. 
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Figure 2@). Eight-noded quadrilatffal element composed of four triangular elements 

The velocities are calculated only for the top triangular element formed h m  the eight-noded 
quadrilateral element along the free surface elements only, as described in Reference 26. The problem 
is solved using both 4- and JI-formulations. Table II gives the contraction coefficients for three 
different types (Table III) of discretization. Eight-noded quadrilateral elements composed of four 
triangular elements and eight-nod4 isoparametric elements are used in the domain discmmb on. 
Discretization I consisted of 219 nodes and 60 elements. Discretization II consisted of 345 nodes and 
96 elements. The contmtion coefficients obtained m the present study an closer to the analytical 
solution given by Rouve and Abdul Khade? with her discretization near the gate opening. The 
contraction coefficients obtained using eight-noded quadratic elements composed of triangular 
elements (Discretization 11) are found to be closer to the analytical solution than those obtained using 
an equal number of eight-noded isopammetric elements (Discretization 111). The contraction 
coefficients for zero gravity flow are closer to those for flows with Froude n u m h  greater than 8. 
Hence it may be seen that the effect of gravity is negligible for flows with Froude numbers greater than 
8, as concluded by Rouve and Abdul Khadec3 

The downstream h e  surface obtained for a Froude number of 4 shows close comparison with the 
analytical solution of Rouve and Abdul Khade? as seen in Figure 3. Table IV gives the maximum 
energy deficits along the fiee surface, i.e. the maximum deviations of the total head H along the free 
surface. The maximum energy deficit is defined as the ratio of the maximum deviation of the total head 
along the free surface to the final asymptotic total head. The energy deficits calculated are well within 
the acceptable limits. It is also seen that the energy deficit is very small in the case of quadrilateral 

. .  

Table n. Comparison of contraction coefficients 

s1. Downs- Analytical Dis I Dis I1 DiSII DiSN 
No. Froude number Solution' (4) (9) ($1 (44 

1 2 0.7067 0-7133 0.704 0.703 - 
2 4 0.74 1 3 0.7542 0.743 0.74 1 0.753 
3 6 0.7467 0.7600 0.748 - - 
4 8 0.7547 0.7610 0.752 - - 

Rouve and Khader (1969). 
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Table III. lLpes of discretizatio n 
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I 
II 
III 

219 
345 
345 

60 
% 
96 

Eight noded quadrilateral 
Eight noded quadrilateral 
Eight nodcd isopanrmCtri c elcmmt 

--- 1 

1.50 2.00 2.50 3.00 

Dit8nce from tbc d o t  opaning (m) 

F i g m  3. Comparison o f h e  surface downstnun ofgate 

Table W. Maximum energy deficits 

Slot opening Energy deficit 
Froude number Total head 
far downstream (4 total head Discr.4 Discr.-111 

2 
4 
6 

0.868 
2.680 
5.760 

0.23 1 
0.150 
0.070 

0- 127% 
0.256% 3.5% 
0.286% 

elements composed of triangular elements, thus indicating the accurate prediction of velocities in such 
an element. 

5 .  COMPARATIVE MERITS OF USING $- AND +-FORMULATIONS 

In the conduit gate problem the velocities are directly imposed as a Neumann boundary condition 
when solving the problem through the JI-formulation, but the velocities am implemented as a Dirichlet 
boundary condition in the $-formulation in order to satisfy the constant pressure condition. The direct 
impsition of velocities in the case of the $-formulation leads to faster couveqence compared with the 
$-formulation as shown in Figure 4. However, this faster convqence is found to be limited to flows 
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Figure 4. Convcrgmce behaviour of 4- and $-formulations 

with Froude numbers less than 4. Flows downstream with Froude numbers greater than 1 and less than 
4 are generally found to occur in sluice gates and the +-formulation developed in the present study is 
adopted to solve the sluice gate problem. The 4-formulation is found to be applicable for a wide range 
of Froude numbers, but it reqwed 25-30 iterations as compared with five to seven iterations taken by 
the $-formulation. The velocities were found to be constant along the conduit bottom at some distance 
from the opening and along the downstream face, validating the assumption that the free surface is 
asymptotic at or beyond a distance equal to three times the slot opening. 

6. MATHEMATICAL MODELLING OF FLOW UNDER A SLUICE GATE 

The flow undm a sluice gate (Figure 5 )  is assumed to be two-dimensional, incompressible, inviscid and 
hence htational. The governing equation is the Laplace equation in the streamfunction $(x, y) given 
by equation (7) of Table I, with the boundary conditions 

$ = 0  alongAF, 
$ = Q along BC and CD, 

aJl/an = 0 along AB and EF, 

V2/2g +y = H along BC, 
w/an = Y = J[2g(H -y)] along DE, 

V,=&,h/aS=O and $ = Q  alongDE, 
vd = J[2g(H - b)] at D. 

Equation (7) is solved with the set of boundary conditions (3 1 )-(37), where V is the velocity along the 
streamline, g is the gravitational acceleration, H is the total head, y is the local elevation above the 
datum and V,, is the velocity n o d  to the streamline. For a given gate opening b and total head H the 
upstream and downstream fke surfaces and the discharge have to be determined. The functional 
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corresponding to equation (7) together with the boundary conditions is given by equation (8) of 
Table I. 

6. I .  Solution procedure 

Assuming a trial discharge and trial free surface, the problem is solved for the upstream and 
downstream free mfaces. The initial upstream surhce is assumed to be horizontal and located at a 
distance H from the channel floor, while a suitable trial free surface is assumed downstream. For 
solving the problem for free surfaces, the conveqence criterion - @ 1 I c for i = 1, . . ., NSN is 
specified, where +f is the +-value for node i at iteration k, @ is the discharge at iteration kl, c; is the 
error tolerance, k is the iteration number for the free d a c e  and kl is the iteration number for the 
discharge. After solving the problem for Ike surfaces for a given discharge, the velocity calculated at 
the lip of the gate is compared with the actual velocity calculated using equation (37). Thus the 
velocity at the lip of the gate, V,, provides a mechanism for updating the trial discharge. If the 
calculated velocity does not compare well with the actual velocity, the discharge is incremented by AQ 
and the fiee surface is solved for Q2 (Ql + AQ = Q2). The next trial discharge Q3 is evaluated using the 
Newton-Raphwn method. The recursive relation for updating the trial discharge is given by 

where Vcl, is the calculated velocity at iteration i and V, is the actual velocity at the lip of the gate. The 
iterations are continued till the calculated velocity at the lip of the gate matches the actual velocity, i.e. 
when IVcl, - Vdl 5 c. 

7. NUMERICAL SIMULATION FOR SLUICE GATE PROBLEM 

In the analysis of the flow field for flow under a vextical sluice gate for a given total head, (i) the 
discharge, (ii) the upstream and downstream free surfaces and (iii) the pressure distribution along the 
floor and along the gate are usually required to be determined. 

A typical dkmtmt~ ' 'on of the flow field for a vertical sluice gate consisted of 498 eight-ded 
quadrilateral elements composed of triangular elements. The results am obtained for b/H=0.3 and 
0.5, keeping the total head H as 0-3 m. The contraction and discharge coefficients obtained in the 
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Table V Comparison of Cc and c d  for vertical sluice gate 

Analytical solution Present study 
Head ‘If 

blH in m c c  C d  C C  c d  
~ 

0.3 0.300 0.598 0.540 0.609 0.562 
0.4 0.225 0.5% 0.525 0.606 0.552 
0-5 0.300 - - 0.559 0.497 

present study show close agreement with the available analytical solution as seen in Table V. Here C, 
and Cd are defined as 

where y1 and y2 are the upstream and downstream uniform flow depths respectively, b is the gate 
opening and Q (m2 s-’) is the exact value of the discharge satisfying the energy condition at the lip. 
The upstream and downstream free surfaces obtained in the present study compare well with the 
comprehensive analytical solution of Fangmeier and Strelkoff as shown in Figures 6 and 7 
respectively. 

Taking the geometry of the gate the same as that given by Finnie and Jeppson?’ the problem is 
solved via the +-formulation developed in the present study using 498 eight-noded quadrilateral 
elements composed of four triangular elements. Previously Suresh Rao and Sankaranara~anan~~.~~ 
used an equal number of eight-noded isoparametric elements for the same problem. From the present 
study it is found that eight-noded quadrilateral elements composed of four triangular elements give a 
better prediction of the pressure and velocity distributions than do an equal number of eight-noded 
isoparametric elements, in spite of the additional computational effort involved in condensing the 
matrices in the former. The pressure distribution obtained in the present study compares well with that 
given by Finnie and Jeppson” as shown in Figure 8. The velocity distribution at the gate obtained in 
the present study compares favourably with that of Finnie and Jeppson” as shown in Figure 9. Finnie 
and Jcppson” analysed the sluice gate problem using turbulent flow theory, taking the initial 
approximation of the downstream free surface from the analytical solution by potential flow theory. 
The total solution time taken for the turbulent flow analysis of the sluice gate is reported to be 1 h on a 
Cray-2-supercomputer. However, the total CPU time required to compute all the details of the flow 
domain in the present study is only 300 s on the Siemens 7.580 E mainframe computer at the Indian 
Institute of Technology, Madras. Thus the formulations and programmes are validated for the vertical 
sluice gate problem. 

8. NUMERICAL SIMULATION FOR SPILLWAY GATE PROBLEM 

In the case of a spillway gate the geometry of the gate is defined as a function of four parameters. 
Hence an analytical solution satisfying the boundary conditions exactly is difficult to obtain. Since the 
Laplace equation has been used to model the flow, the frictional effects are neglected. However, in the 
experimental study also, since the scaling is done using the Froude model law, the frictional effects of 
the prototype are not scaled appropriately. The present study differs fiom that of Larock’’ by assuming 
the discharge to be not known a prion. Hence free surfaces are determined for a trial discharge and the 
correct discharge is detennined using the boundary condition at the lip of the gate. 
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8. I .  Geometrical details of the spillway gate 

geometric details of the gate are as follows:' 
Figure 10 shows the definition sketch of the spillway radial gate of John Doe Dam (U.S.A.). The 

design head 
radius of gate RG = 9.38 m 
trunnion co-ordinates X, = 10.25 m 

YT = 3-66 m 
gate lip co-ordinates XL = 0.88 m 

YL = 4.52 m 
effective gate opening Go = 4.56 m. 

H ,  = 11.3 m 

The spillway lower nappe profile is given by 
x1 a 3  = - 2 p  85 

d Y -  

8.2. Numerical simulation 

Based on the above details, the gate angle /I formed by the tangent to the gate lip and the tangent to 
the crest curve at the nearest point of the crest curve is taken as 9 1.2". Taking the geometry of the gate 

Figure 10. Definition slcach of apilhy d i a l  gate 
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as given in Section 8.1, the problem is solved for two different heads H = 8.256 and 9.8 m, H being 
measured h m  the free surface to the highest point of the crest curve. These heads are chosen because 
experimental and field measurements are available for them and for a possible comparison of 
discharges. A typical discretization for a spillway gate problem is shown in Figure 11 consisting of 
1349 nodes and 41 2 eight-noded quadrilateral elements. Previously Sankaranarayanan26 used an equal 
number of eight-noded isoparametric elements in his study. Previous studies of the uncontrolled 
spillway problem show that the potential flow models represents well the actual flow in the region 
where the flow is rapidly contracting or acclerating. However, as the fluid passes M e r  down the 
spillway face, real fluid effects become progressively more important. For this reason the downstream 
extent of the flow domain is delimited rather severely as shown in Figure 1 1. 

The determination of the downstream free surface and the imposition of the uniform flow condition 
are made difficult by the presence of curved solid boundaries, especially the irregular bottom boundary. 
Uniform flow is assumed to occur at distances approximately equal to two times and one and a half 
times the head causing flow under the gate from the spillway face on the upstream and downstream 
sides respectively. The fardownstream efflux face is made normal to the spillway surface to impose the 
downstream uniform flow condition without much difficulty. On the other hand, other elements 
downstream are aligned vertically so that adjustments in the free surface are made easily. The 
discharges computed from the present study compare well with those computed in the prototype 
investigations by the United States Waterways Experimental Station as seen in Table VI. Figure 12 
shows the free surface profiles downstream of the spillway for two different heads. Further details on 
the results for the spillway gate problem are given in Reference 26. 

Figure 11. Typical discretization of spillway radial gate 
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Table VI. Comparison of discharges obtained in this study with 
experimental results 

Discharge per unit width (m*/s) 
Effective gate 

Head O P h f 3  Experiment 
(m) (m) (US Army corps) Resent study 

8.256 4.56 
9.8 4.56 

35 
39 

34.3 
38.85 

3 

32 

20 -. 
E 
Y 

?I 5 2 4  - 
U 
6 

20 

16 

12 

- 
Spillway protile - Free surface for head=8.256 - Free surface for head=9.8m 

I I I I 
15 20 25 30 35  L a  

Oistame (m! 

F i g m  12. Frcc surface profiles downstrrpm of gate for two di5mut beads 

9. CONCLUSIONS 

A simple conduit gate problem with a free surface is solved by the FEM using both $- and $- 
formulations. When solving the gate problem through the *-formulation, various combinations of 
satisfying the tiee boundary conditions are successfilly tried and a new method has been evolved and 
is found to converge faster. The contraction coefficient and the downstream fiee surface obtained in the 
present study compare closely with the available analytical solution. The selection of the 4- or $- 
fornulation is found to be problern-dependent. For problems in which the Fmude numbers 
encounkd are less than 4, the present study shows that the $-formulation converges faster than the 
$-formulation. Incidentally, flows with Froude numbers less than 4 often occur in sluice gates. Hence 
the present $-formulation is usehl for solving the sluice gate problem. A typical problem of flow 
under a sluice gate with a tiee surface upstream and downstream is solved by the FEM through the JI- 
formulation and validated with available experimental and analytical solutions. With a very moderate 
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computational time, pressure and velocity distributions are obtained which compare very well with 
those measured by Finnie and Jepp~on,~‘ thus confirming the adequacy of the algorithm used. After 
validating the FEM model developed for the vertical sluice gate problem, a more general problem of 
flow under a spillway gate with curved solid boundaries is solved. 
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